
The SGL Programming Language: A Tutorial

by Malcolm Jennings and Eric U. Smith

published by Interdimensional Gadgeteers and Technomages

(written on the page in pencil: “This one is a snoozer, but it’s by far the best
source. Added some jokes to make it less boring!”)

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Introduction

The SGL Programming language is a sigil-based language for the manipulation
of connected realities based on IGT standards. It can be performed by use
of INSCRIBING and EXPUNGING sigils in a properly-aligned Funge Space.
It requires interaction with a standards-compliant Propositional Reckoning
Device, such as those manufactured by The ReckCo! Corporation.

After aligning a Funge Space, a mage simply needs to INSCRIBE or engrave
sigils in the Funge Space to command the Instruction Grue. This is a friendly,
familial, tutorial for a clever mage, so it is understood that mistakes will be made
following along. Simply EXPUNGE those sigils to return the Funge Space Cell
to a blank state.

May you enjoy your journey!

(written on the page in pencil: “That is the last exclamation point you’re going
to be seeing for a while.”)

The SGL Programming Language: A Tutorial

2



The Sigils of the SGL Programming Language

The sigils of the SGL Programming language are named after the letters of the
Greek Alphabet. Which are:

• Alpha (α, Α)
• Beta (β, Β)
• Gamma (γ, Γ)
• Delta (δ, Δ)
• Epsilon (ε, Ε)
• Zeta (ζ, Ζ)
• Eta (η, Η)
• Theta (θ, Θ)
• Iota (ι, Ι)
• Kappa (κ, Κ)
• Lambda (λ, Λ)
• Mu (μ, Μ)
• Nu (ν, Ν)
• Xi (ξ, Ξ)
• Omicron (ο, Ο)
• Pi (π, Π)
• Rho (ρ, Ρ)
• Sigma (σ, Σ)
• Tau (τ, Τ)
• Upsilon (υ, Υ)
• Phi (φ, Φ)
• Chi (χ, Χ)
• Psi (ψ, Ψ)
• Omega (ω, Ω)

Though, to learn them in that order would be confusing. There is odd logic in
the sigil names, and where possible, we will provide mnemonics. For now, you
should notice that the Alpha Sigil is the start, and Omega Sigil is the end.

The SGL Programming Language: A Tutorial

3



The Alpha and Omega Sigils: Start and End

The processing of a SGL program starts with a ReckCo!-brand Instruction Grue
facing to the east in a cell where the

Alpha Sigil (α, Α) has been engraved. Starting from this location, the Instruction
Grue will move forward (that is, to the east) and respond to other SGL sigils to
manipulate IGT standard-compliant Bul Tubes.

Its opposite, the Omega (ω, Ω) Sigil, ends the processing of an SGL program,
emptying the Bul Tube into a Propositional Reckoning Device, which may then
perform further manifestation in the aligned reality. Much like the Alpha Sigil,
the Omega Sigil can only be engraved. All other sigils may be INSCRIBED,
assuming no sigil has been engraved there already by the Propositional
Reckoning Device.

The SGL Programming Language: A Tutorial

4



The Kappa, Lambda, Iota, and Eta Sigils: Cardinal
2-dimensional Direction Shifters

Funge Space itself may be either 2-dimensional or 3-dimensional. As
3-dimensional is an extension of 2-dimensions, let us start with only 2.

In 2 dimensions, Cells in Funge Space will be connected in the north, east,
south, and west directions, which are the same directions an Instruction Grue
can move, in 2-dimensions. As mentioned in the last chapter, the Instruction
Grue starts off facing to the east. Unless prompted to turn by a sigil, the
Instruction Grue will proceed through Funge Space cell by cell.

These 4 Sigils:

• Kappa (κ, Κ): Go North
• Lambda (λ, Λ): Go East
• Iota (ι, Ι): Go South
• Eta (η, Η): Go West

command the Instruction Grue to turn in their respective directions. That is,
when encountering one, the Instruction Grue will turn north, east, south, or west
based on the sigils engraved or INSCRIBED in Funge Space.

(written on the page in pencil next to “Go West”: “Life is peaceful there :3”)
(written on the page in pencil: “Research suggests these sigils are based on
some obscure UNIX tool that uses the HJKL keys???”)

The SGL Programming Language: A Tutorial

5



The Phi and Rho Sigils: Cardinal 3-dimensional Direction
Shifters

When Funge Space is 3-dimensional, in addition to the directions from
2-dimensional space (that is, north, south, east, and west), the Instruction Grue
can move up and down. (Mages riding an Instruction Grue should take care to
properly harness themselves!)

The next 2 sigils:

• Phi (φ, Φ): Go Up
• Rho (ρ, Ρ): Go Down

command the Instruction Grue to turn in their respective directions. These can
be remembered through a simple mnemonic: “Phi to go up high, Rho to go
down low.”

(written on the page in pencil: “Aw, this doesn’t work in 2D. ;_;“)

The SGL Programming Language: A Tutorial

6



The Gamma and Zeta Sigils: Left and Right Turns

In addition to sigils for more specific directions as we’ve just seen, there are
more general sigils to turn left (counter-clockwise) and right (clockwise):

• Gamma (γ, Γ): Turn Left
• Zeta (ζ, Ζ): Turn Right

When these sigils are encountered the Instruction Grue will turn 90 degrees
around the up-down axis. For example, An Instruction Grue facing north can
turn left (Gamma (γ, Γ)) to the west direction, or turn right (Zeta (ζ, Ζ)) to the
east direction. All the cardinal 2-dimensional directions (that is, north, east,
south, and west) are similar.

These sigils can also be used when Funge Space is 3-dimensional, but
behavior when the Instruction Grue is facing up or down is not specified, and
left up to vendor implementation.

The Gamma Sigil can be remembered if a mage recalls that a capital gamma
looks like an upside-down ‘L’ and thus is to turn left. Unfortunately, the Zeta
Sigil lacks a friendly mnemonic.

(written on the page in pencil: “How about I’ll send you RIGHT to the zoo with
Zeta!? :p”)

The SGL Programming Language: A Tutorial

7



The Nu Sigil - Reflection Direction Shifter

Another generic direction sigil is the Nu (ν, Ν) Sigil, which commands the
Instruction Grue to turn 180 degrees from the current direction it is facing. For
example, an Instruction Grue facing east will turn to the west, while one facing
upwards will turn downwards.

Note that this behavior is also triggered when the Instruction Grue encounters
an unfamiliar sigil, though this should not be depended on.

(written on the page in pencil: “Nu, you can’t go that way, you’ll have to turn
back around!”)

The SGL Programming Language: A Tutorial

8



The Upsilon Sigil - Random Direction Shifter

Technomages, such as IGT members, have long found that while computers
strive on order, magic strives on chaos. To perform technomagic, then, a mage
is often required to introduce a bit of chaos into the ordered world of computers.
The SGL programming Language is no different.

The Upsilon (υ, Υ) Sigil commands the Instruction Grue to turn in a random
cardinal direction. That, is for 2-dimensional Funge Space, north, east, south,
or west. For 3-dimensional Funge Space, it may also turn upwards and
downwards.

(written on the page in pencil: “Idea: Upsilon looks like a ‘Y’, so ‘why leave this
up to chance?’”)

The SGL Programming Language: A Tutorial

9



The Beta Sigil - Skip Next Cell

Very similar to other direction sigils, the Beta (β, Β) Sigil is focused on the
Instruction Grue’s position in Funge Space. When encountered, the Instruction
Grue is commanded to maintain the same facing, but skip the next cell it would
normally enter, landing in the cell past that one. This may cause the Instruction
Grue to wrap around Funge Space.

(written on the page in pencil: “BOING :3”)

The SGL Programming Language: A Tutorial

10



The IGT Standard Bul Tube

To explain upcoming sigils, a mage must understand the IGT standard Bul
Tube. Buls can either be set to “Trul” or “Ful”, which corresponds to true and
false within binary Propositional Reckoning.

(Future expansions of Buls to account for multi-valued logic are planned.)

An IGT standard Bul Tube, then is simply a tube holding a set of Buls for the
Instruction Grue to operate on. While traversing Funge Space, the Instruction
Grue may encounter additional embedded or placed Buls. When doing so, the
Instruction Grue is commanded to put that Bul into the Bul Tube, pushing the
others down.

In general, sigils operate on the most recently added Buls. That is the top Buls,
compared to the bottom Buls that have been pushed down. If for some reason
the Bul Tube is empty, and a sigil requires a Bul as an argument, the Bul Tube is
treated as an infinitely deep tube of Buls set to Ful. Mages should avoid running
into this case, ideally.

The SGL Programming Language: A Tutorial

11



The Pi, Delta, Sigma, and Mu Sigils: Bul Tube Operation
Sigils

Once Buls have been pushed into the Bul Tube, a Mage will desire to operate
on the Buls in the tube. To do that, they need a way to pull what they’ve pushed
down. You may have guessed that the Pi (π, Π) Sigil is exactly that. Pi starts
with P so you “pull” what you have “pushed”. (Pi’s mathematical significance
does not factor into this. As a mage is well aware, it is only constant given one
particular universe’s instantiation of Pi due to Gribnax’s Lemma, which is the
basis of the Propositional Reckoning method of universe alteration.)

To be more explicit, when the Instruction Grue encounters the Pi (π, Π) Sigil, it
should pull a Bul out of the tube. However, that is all it will do. The Chi Energy
(not to be confused with the Chi Sigil) represented by the Bul will dissipate.
Other sigils will operate on the pulled Bul after pulling a Bul, utilizing the Chi
Energy.

For example, the Delta (δ, Δ) Sigil commands the Instruction Grue to duplicate
the pulled Bul, and then pushes the two duplicates back into the tube. As
“Delta” begins with “D” and so does “duplicate”, this sigil should be easy for the
mage to remember.

When encountering the Sigma (σ, Σ) Sigil, the Instruction Grue is commanded
to pull out the top 2 Buls from the tube, and then push them back into the tube
in the opposite order that it pulled it in. That is if the top 2 Buls were called “X”
and “Y” starting at the top, “X” would be pushed first, and then “Y”. This would
swap the Buls. The clever mage may have noticed that “Sigma” and “Swap”
both start with “S”!

When encountering the Mu (μ, Μ) Sigil, the Instruction Grue is commanded to
pull all the Buls out of the tube and not push any back in. This will dissipate the
Chi Energy (once again not to be confused with the Chi Sigil).

See the previous chapter for a general explanation of how sigils generally treat
an empty Bul Tube.

(written on the page in pencil: “‘mu’ is Japanese for ‘nothing’”)

The SGL Programming Language: A Tutorial

12



The Chi, Epsilon, and Omicron Sigils: The Bul Operators

The next three Sigils command the Instruction Grue to perform the equivalent
of basic Boolean logic operators with pulled Buls and to push the result back
into the tube. A mage interested in reality operation through Propositional
Reckoning will surely recognize these. (Once again, Future Expansions of Buls
to account for multi-valued logic are planned. Keep a watch for news from your
guild.)

The Chi (χ, Χ) Sigil, which must not be confused with the Chi Energy found
within every Bul, commands the Instruction Grue to pull one Bul from the tube,
invert the Bul, and then push the Bul back into the tube. That is, if the pulled Bul
is Trul, the pulled Bul is flipped to Ful, and then the pulled Bul is pushed back
in the tube, now set to Ful.

(written on the page in pencil: “*borat voice* this bul is Trulnot lol”)

The Epsilon (ε, Ε) Sigil, when encountered by the Instruction Grue, command it
to pull 2 Buls from the tube. If and only if, the two Buls are set to Trul, a Bul set
to Trul is pushed down. Otherwise, if either are Ful, a Bul set to Ful is pushed
down. The clever mage is likely very familiar with the language of Latin, and
has figured out that as the word in Latin for “and”, et, starts with an “E”. This
gives it similarity to the Greek letter epsilon, which looks like an “E”.

The Omicron (ο, Ο) Sigil, when encountered, commands the Instruction Grue
to pull 2 Buls from the tube. If either are Trul, a Bul set to Trul is pushed down.
If neither are Trul, that is both are Ful, then a Bul set to Ful is pushed down.
“Omicron” and “Or” both start with “O”, so this should be trivial for a mage to
remember.

(written on the page in pencil: “wasn’t omnicron that big planet robot from
transformers?”)

The SGL Programming Language: A Tutorial

13



The Psi, Theta, and Xi Sigils: Cardinal Bul-based Direction
Shifters

These sigils are like a combination of the direction shifters and the operator
sigils discussed in previous chapters. When these sigils are encountered the
Instruction Grue is commanded to pull 1 or 2 Buls from the tube, and based on
the Bul’s setting, turn to a new facing. The Bul pulled will be then discarded.
This will be clearer to the mage after some description of these sigils.

The Psi (ψ, Ψ) Sigil is the east-west Bul-based direction shifter. That is, the
Instruction Grue is commanded to pull one Bul from the tube. If the setting of
that Bul is Trul, the Instruction Grue will turn west. Otherwise, if it is Ful, the
Instruction Grue will turn east.

The Theta (θ, Θ) Sigil is the north-south Bul-based direction shifter. That is, the
Instruction Grue is commanded to pull one Bul from the tube. If the setting of
that Bul is Trul, the Instruction Grue will turn north. Otherwise, if it is Ful, the
Instruction Grue will turn south.

The Xi (ξ, Ξ) Sigil is the up-down Bul-based direction shifter. That is, the
Instruction Grue is commanded to pull one Bul from the tube. If the setting of
that Bul is Trul, the Instruction Grue will turn upwards. Otherwise, if it is Ful,
the Instruction Grue will turn downwards. This is only possible in 3-dimensional
Funge Space. If Funge space is 2-dimensional, the Instruction Grue will act as
if it encountered a Nu Sigil, and turn 180 degrees to the opposite direction from
the direction it is facing. No Bul will be pulled.

The SGL Programming Language: A Tutorial

14



The Tau Sigil: Left-right Bul-based Direction Shifter

The Tau (τ, Τ) Sigil is the left-right Bul-based direction shifter. Unlike the sigils
discussed last chapter, it operates on two Buls. This will perhaps be easier to
think of Trul as the number 1 and Ful as the number 0 (the clever mage will
notice that these are the integral representations of “true” and “false” using a
mapping to the set of integers modulus 2). When the Tau sigil is encountered,
the Instruction Grue is commanded to pull two Buls from the tube, which we call
Bul X and Bul Y, with Bul Y as the top Bul in the tube, and Bul X as the second
Bul in the tube.

If Bul X is less than Bul Y (that is, X is Ful (0) and Y is Trul (1)), the Instruction
Grue is commanded to turn right (as if it encountered the Zeta Sigil). However,
if Bul X is more than Bul Y (that is, X is Trul (1) and Y is Ful (0)), the Instruction
Grue is commanded to turn left (as if it encountered the Gamma Sigil).

Otherwise, it must mean that both Bul X and Bul Y have the same value
(assuming binary Propositional Reckoning (multi-valued Propositional
Reckoning is planned for future expansions (watch your guild email list!))). In
this case, the IG is commanded to not turn at all, and maintain its current facing.

We apologize for the use of the initialism “IG” for “Instruction Grue”. We got
carried away with the parentheses, and our editor requested we shorten this
page somehow.

The SGL Programming Language: A Tutorial

15



A Simple Example

Part 1

For the illustration of the student, let us explain a simple example on a
2-dimensional Funge Space of size 5 cells. Consider the following overview
of the Funge Space represented as if we were looking down upon the entire
space from above. In this case, west and east would be left and right,
respectively, and north and south would be up and down, respectively. Cells
are displayed as single characters, the sigils written as each upper-case letter,
Buls represented as 1 if they are Trul, or 0 if they are Ful, and cells with neither
as an interpunct (·). Do not worry if you do not remember all the Instruction
Grue commandments represented by the Greek letters. The descriptions of
standards-compliant execution that follow will help remind you. A mage may
also want to look at the reference pages in the back for the full list.

Here is a possible view of such a Funge Space:

Α·Ι··
Ω1ΨΠΙ
··ΚΧΗ
·····
·····

Note: We have chosen upper-case letters as most Funge Space mapping tools
use those to represent engraved sigils, saving lower-case letters for sigils that
have been inscribed by the mage. As engraved sigils are often more of a
roadblock to the mage, it behooves them to gain familiarity with them first.
However, remembering the lower-case letters is just as vital.

The SGL Programming Language: A Tutorial

16



Part 2

Α·Ι··
Ω1ΨΠΙ
··ΚΧΗ
·····
·····

Let’s start at the Alpha (Α) Sigil in the most northwest corner, facing to the east.
The next cell to the east has nothing, so the Instruction Grue will continue to
the cell to the east of that. There, the Iota (Ι) Sigil will command the Instruction
Grue to face the south. Moving to the cell to the south, the Psi (Ψ) Sigil will
command the Instruction Grue to pull a Bul from the tube.

If that Bul is Trul, it will face to the west. In the cell to the west, it will find a
Bul set to Trul and it will push the value of that Bul back into the tube. This
essentially replaces the Trul Bul that was discarded while responding to the
Psi (Ψ) Sigil in the previous cell. It will then move to the west, reaching the
Omega (Ω) Sigil, where the program ends, and the current Bul-tube is sent to
the Propositional Reckoner.

The SGL Programming Language: A Tutorial

17



Part 3

Α·Ι··
Ω1ΨΠΙ
··ΚΧΗ
·····
·····

However if the Bul pulled in response to the Psi (Ψ) Sigil was Ful, It will face
to the east. Moving east to the next cell, the Instruction Grue will notice the Pi
(Π) Sigil, and then proceed to pull another Bul from the tube, discarding it. The
clever mage will note that means the top two tube Buls are discarded if the top
one is Ful.

Moving east to the next cell, the Instruction Grue will encounter the Iota (Ι) Sigil
again, and will turn to the south. Moving south to the next cell, the Instruction
Grue will encounter the Eta (Η) Sigil, and will turn to the west. Moving west to
the next cell, the Instruction Grue will encounter the Chi (Χ) Sigil. It will then pull
a Bul from the tube and set it to the opposite of what it’s currently set to, and
then push it back into the tube.

Proceeding west from there, the Instruction Grue will encounter the Kappa (Κ)
Sigil, and turn to the north. Proceeding north from there, it will encounter the
Psi (Ψ) Sigil again, and essentially follow the same process, until it encounters
a Bul set to Trul when processing the Psi (Ψ) Sigil, and end the program.
The clever mage will notice that this is essentially a looped set of instructions
as they may be familiar with from other programming languages. The very
clever mage will notice that also forms a looped part in Funge Space, providing
a lovely correspondence to the looped set of instructions. All mages should
be careful that they do not end up in an infinite loop. DISMOUNTING the
Instruction Grue is the only way to have it stop responding to sigils. You’ll die
well before it does.

The SGL Programming Language: A Tutorial

18



Part 4

Α·Ι··
Ω1ΨΠΙ
··ΚΧΗ
·····
·····

Describing what this essentially implements is a bit odd, as it was essentially
made as a one-off example rather than a real program. But let’s start looking
with the top of the tube (the first Bul). If that Bul is set to Trul, ultimately the tube
is left alone. The first Bul will be pulled out while processing the Psi (Ψ) Sigil,
but another Bul set to Trul will be immediately pushed on.

If the first Bul is set to Ful however, it and the second Bul will be pulled out the
tube and discarded. The third Bul then will be set to its opposite. So if that third
Bul was Ful, it will get set to Trul, and then once the Psi (Ψ) Sigil commands
the Instruction Grue to move west, where it will replace that third Bul (now set
to Trul) and finish the program.

However, if the third Bul was Trul, it will get set to Ful when the Chi (Χ) Sigil
is encountered. Then Psi (Ψ) Sigil would command the Instruction Grue to
move east, where it will pull out the third Bul and the next (fourth) Bul and
discard them. The next (fifth) Bul will now be at the top of the tube, in the same
position as the third bul was, and the same will happen to it as the third Bul.
The program will continue until that top bul is finally Ful (before being inverted
in response to the Chi (Χ) Sigil), and then it will end with the top bul set to Trul.

To really reduce this down, you can consider the tube as being split in pairs.
If the first of a pair is Trul, processing stops. If it is Ful, both of the pair are
discarded, and the first of the next pair is inverted. The process then continues
with that pair. This likely not a realistic program, but it’s simple enough for an
example.

The SGL Programming Language: A Tutorial

19



Exercise

Α·Ι··
Ω1Ψ?Ι
··ΚΧΗ
·····
·····

This is mostly the same example, but with one sigil replaced with a “?”. The
Instruction Grue starts with 4 Buls in the tube of Ful, Ful, Ful, and Trul (from the
top). The clever mage should now have enough information to be able to figure
out which sigil should replace the ‘?’ so that when it reaches the Omega (Ω)
Sigil, there are 3 Buls in the tube set to Trul, Ful, Trul (from the top).

The SGL Programming Language: A Tutorial

20



Exercise, Answer

The answer is the Sigma (Σ) Sigil.

Α·Ι··
Ω1ΨΣΙ
··ΚΧΗ
·····
·····

The SGL Programming Language: A Tutorial

21



Afterword

Congratulations, clever mage! You have reached the final chapter. You should
now be able to use the SGL Programming language to command an Instruction
Grue to modify an IGT standard Bul-tube in order to provide the input of a
Propositional Reckoning Reality Alteration Device.

We had a very fun time writing this and we hope you had fun reading it. And
now, when some one asks you if you know the SGL Programming language,
you can proudly say “It’s all Greek to me!”.

(A drawing of an angry face has been drawn on this page in pencil.)

The SGL Programming Language: A Tutorial

22



Appendix: Sigil Reference Chart

• Execution Control Sigils
◦ Alpha (α, Α): Start Execution (Facing East)
◦ Omega (ω, Ω): End Execution

• Cardinal Direction Shifters
◦ Kappa (κ, Κ): Go North
◦ Lambda (λ, Λ): Go East
◦ Iota (ι, Ι): Go South
◦ Eta (η, Η): Go West
◦ Phi (φ, Φ): Go Up, 3-dimensional only
◦ Rho (ρ, Ρ): Go Down, 3-dimensional only

• Special Direction Shifters
◦ Gamma (γ, Γ): Turn Left
◦ Zeta (ζ, Ζ): Turn Right
◦ Nu (ν, Ν): Reflect (Default unknown sigil behavior)
◦ Upsilon (υ, Υ): Random Direction Shifter
◦ Beta (β, Β): Skip Next Cell

• Bul Tube Operation Sigils
◦ Pi (π, Π): Pull Top Bul and Discard
◦ Delta (δ, Δ): Duplicate Top Bul
◦ Sigma (σ, Σ): Swap Top 2 Buls
◦ Mu (μ, Μ): Empty Bul Tube

• Bul Operator Sigils
◦ Chi (χ, Χ): Not Operator
◦ Epsilon (ε, Ε): And Operator
◦ Omicron (ο, Ο): Or Operator

• Bul-based Direction Shifters
◦ Psi (ψ, Ψ): East-West, west if top is Trul, else east
◦ Theta (θ, Θ): North-South, north if top is Trul, else south
◦ Xi (ξ, Ξ): Up-Down, up if top is Trul, else down, 3-d only
◦ Tau (τ, Τ): Left-Right, turn right if top is less than second, left if

more than, and else stay straight

The SGL Programming Language: A Tutorial

23


	The SGL Programming Language: A Tutorial
	Introduction
	The Sigils of the SGL Programming Language
	The Alpha and Omega Sigils: Start and End
	The Kappa, Lambda, Iota, and Eta Sigils: Cardinal 2-dimensional Direction Shifters
	The Phi and Rho Sigils: Cardinal 3-dimensional Direction Shifters
	The Gamma and Zeta Sigils: Left and Right Turns
	The Nu Sigil - Reflection Direction Shifter
	The Upsilon Sigil - Random Direction Shifter
	The Beta Sigil - Skip Next Cell
	The IGT Standard Bul Tube
	The Pi, Delta, Sigma, and Mu Sigils: Bul Tube Operation Sigils
	The Chi, Epsilon, and Omicron Sigils: The Bul Operators
	The Psi, Theta, and Xi Sigils: Cardinal Bul-based Direction Shifters
	The Tau Sigil: Left-right Bul-based Direction Shifter
	A Simple Example
	Part 1
	Part 2
	Part 3
	Part 4
	Exercise
	Exercise, Answer

	Afterword
	Appendix: Sigil Reference Chart


